Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

B. Sridhar, ${ }^{\text {a }}$ N. Srinivasan, ${ }^{\text {b }}$
Bjoern Dalhus ${ }^{\mathrm{c}}$ and R. K. Rajaram ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Physics, Madurai Kamaraj University, Madurai 625 021, India,
${ }^{\text {b }}$ Department of Physics, Thiagarajar College, Madurai 625 009, India, and ${ }^{\text {c }}$ Department of Chemistry, University of Oslo, Blindern, N-0315 Oslo, Norway

Correspondence e-mail: sshiya@yahoo.com

Key indicators

Single-crystal X-ray study
$T=105 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$
R factor $=0.023$
$w R$ factor $=0.068$
Data-to-parameter ratio $=32.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

l-Citrullinium perchlorate

In the title compound, $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+} \cdot \mathrm{ClO}_{4}^{-}$, the citrullinium residue forms a strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with the terminal O atom of a symmetry-related residue. This residue has a gauche I-trans-trans-trans conformation. The crystal structure is stabilized by an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding network. The perchlorate anion is linked to the cation, forming chains along the a axis.

Comment

Citrulline amino acid is found in the urea cycle. The crystal structures of L-citrulline hydrochloride (Naganathan \& Venkatesan, 1971), L-citrulline hydrochloride and L-homocitrulline hydrochloride (Ashida et al., 1972), and L-citrulline (Toffoli et al., 1987) have been reported. In the present study, the crystal structure determination of L-citrullinium perchlorate, (I), was undertaken.

(I)

Received 13 September 2002 Accepted 26 September 2002 Online 30 September 2002

Figure 1
The molecular structure of the title compound, showing the atomnumbering scheme and 50% probability displacement ellipsoids (Johnson, 1976).

Figure 2
Packing diagram of (I), viewed down the a axis.

The carboxyl O atom of the citrulline residue forms a strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with the terminal O atom of a symmetry-related residue (Table 2). The $\alpha-, \varepsilon$ - and η - N atoms ($\mathrm{N} 1, \mathrm{~N} 2$ and N 3) of the citrullinium residue form $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with the O atoms of the perchlorate anion. In addition, the $\alpha-\mathrm{N}$ atom forms an intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with the terminal O atoms (Fig. 3). A class I hydrogen-bonding pattern is observed in the present structure,

Figure 3
Packing diagram of (I), viewed down the c axis. H atoms have been omitted for clarity.
having three two-center hydrogen bonds (Jeffrey \& Saenger, 1991). Atom O4 of the perchlorate anion links the citrullinium residues through $\mathrm{N}^{\alpha}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in a chain running along the a axis $\left[\mathrm{O} 4^{\mathrm{i}} \cdots \mathrm{H} 1 A-\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 4^{\text {ii }}\right.$; symmetry codes: (i) $-x+2, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+1, y+1 / 2$, $\left.-z+\frac{1}{2}\right]$. The citrullinium residues are packed as corrugated sheets in the $a b$ plane, interconnected by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding (Fig. 3).

Experimental

The title compound was crystallized by slow evaporation from an aqueous solution of citrulline and perchloric acid in a stoichiometric ratio of 1:1.

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+} \cdot \mathrm{ClO}_{4}^{-}$
$M_{r}=275.65$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=5.1113$ (1) \AA
$b=11.3497(2) \AA$
$c=19.3853$ (3) \AA
$V=1124.57(3) \AA^{3}$
$Z=4$
$D_{x}=1.628 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.615 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART CCD
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.77, T_{\text {max }}=0.89$
25355 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.068$
$S=1.03$
5866 reflections
183 parameters
H atoms treated by a mixture of independent and constrained refinement
D_{m} measured by flotation in a mixture of carbon tetrachloride and xylene
Mo $K \alpha$ radiation
Cell parameters from 7473 reflections
$\theta=2.1-37.5^{\circ}$
$\mu=0.37 \mathrm{~mm}^{-1}$
$T=105$ (2) K
Block, colorless
$0.70 \times 0.45 \times 0.30 \mathrm{~mm}$

[^0]Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{O} 1 A-\mathrm{C} 1$	$1.2189(8)$	$\mathrm{O} 1 B-\mathrm{C} 1$	$1.3151(8)$
$\mathrm{O} 1 A-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	$7.52(8)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 6$	$162.71(7)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$68.99(7)$	$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 6-\mathrm{O} 1 \mathrm{C}$	$174.51(6)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-177.39(6)$	$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 6-\mathrm{N} 3$	$-4.72(11)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 2$	$-179.47(6)$		

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 B-\mathrm{H} 1 \cdots \mathrm{O} 1 C^{\mathrm{i}}$	$0.70(2)$	$1.84(2)$	$2.5292(8)$	$171(2)$
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 4^{\text {ii }}$	$0.846(17)$	$2.234(17)$	$3.0226(9)$	$155(2)$
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 4^{\text {iii }}$	$0.926(15)$	$2.162(16)$	$2.9699(9)$	$145(1)$
$\mathrm{N} 1-\mathrm{H} 1 C \cdots \mathrm{O} C^{\text {iv }}$	$0.918(15)$	$1.906(15)$	$2.7986(8)$	$164(1)$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 2^{\text {iii }}$	$0.837(15)$	$2.583(14)$	$3.3562(10)$	$154(1)$
$\mathrm{N} 3-\mathrm{H} 3 C \cdots 4^{\mathrm{v}}$	$0.818(13)$	$2.326(13)$	$3.1205(8)$	$164(1)$
$\mathrm{N} 3-\mathrm{H} 3 D \cdots \mathrm{O}^{\text {vi }}$	$0.833(15)$	$2.292(15)$	$3.0952(9)$	$162(1)$

Symmetry codes: (i) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$; (ii) $2-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iv) $\frac{3}{2}-x, 2-y, z-\frac{1}{2}$; (v) $\frac{1}{2}+x, \frac{3}{2}-y, 1-z$; (vi) $1+x, y, z$.

All H atoms were located from a difference Fourier map. Those on the N and O atoms were refined freely, but the remainder were placed in idealized positions and were refined as riding on their parent atoms. 2484 Fridel pairs were measured and used.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve
structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

BS thanks the Council of Scientific \& Industrial Research (CSIR), Government of India, for financial assistance and RKR thanks the Department of Science and Technology (DST), Government of India, for financial support. Financial support from UGC is acknowledged.

References

Ashida, T., Funakoshi, K., Tsukihara, T., Ueki, T. \& Kakudo, M. (1972). Acta Cryst. B28, 1367-1374.
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Jeffrey, G. A. \& Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin, Heidelberg, New York: Springer-Verlag.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lakshminarayanan, A. V., Sashisekaran, V. \& Ramachandran, G. N. (1967). In Conformation of Biopolymers, edited by G. N. Ramachandran. London: Academic Press.
Naganathan, P. S. \& Venkatesan, K. (1971). Acta Cryst. B27, 1079-1085.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (1999). PLATON for Windows. Utrecht University, The Netherlands.
Toffoli, P., Khodadad, P., Rodier, N. \& Astoin, J. (1987). Acta Cryst. C43, 945947.

[^0]: 5866 independent reflections
 5757 reflections with $I>2 \sigma(I)$
 $R_{\text {int }}=0.017$
 $\theta_{\text {max }}=37.5^{\circ}$
 $h=-8 \rightarrow 8$
 $k=-19 \rightarrow 18$
 $l=-32 \rightarrow 33$

